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a  b  s  t  r  a  c  t

Far-infrared  reflectivity  spectra,  in  spectral  region  50–600  cm−1 and  temperature  region  80–300  K, of
CdS  and  Cd1−xMnxS nanocrystals  embedded  in  hexametaphosphate,  are  presented.  The  analysis  of  the
far-infrared  experimental  reflectivity  spectrum  was  made  by  the  fitting  procedure.  The Maxwell–Garnet
effective  medium  theory  is  used  for modeling  an  effective  dielectric  function  as  well  as  to  separate  respond
from  nanoparticles.

To analyze  spectra  in  CdS ωTO(≈238  cm−1)  to  ωLO(≈305  cm−1) spectral  region,  quantized  dipolar  modes
in  a spherical  isotropic  material  quantum  dot  (QD)  are  considered  in the framework  of  a continuum
model.  As  to the  mechanical  boundary  conditions  rigid  sphere  is  concerned.  Experimental  far-infrared
reflectivity  spectra  of  our  samples  are  in  general  agreement  with  the  predictions  of  this  model.

Experimentally  registered  and  through  fitting  procedure  located  features  for  CdS  nanoparticles  in spec-
tral region  below  CdS  ωTO at:  ≈102  cm−1, ≈135  cm−1, ≈170  cm−1 and  ≈210  cm−1 are  associated  to defect

induced  modes,  especially  to  defects  located  near  the  surface  of CdS  QD.  In region  over  CdS  ωLO,  modes  are
identified  as  multiphonons.  In  Cd1−xMnxS QD  spectra  new  reflectivity  peaks  are  at:  ≈85  cm−1,  ≈110  cm−1

and  ≈180  cm−1 in spectral  region  below  CdS  ωTO, ≈270  cm−1 inside  CdS  ωTO–ωLO spectral  region  and
≈356 cm−1 and  ≈376  cm−1 in region  over  CdS  ωLO. First  two  registered  modes  are  associated  to  both
mass  and  force  constant  defects  at the  surface,  and  rest  four modes  are  consequence  of  MnS  phases
present  in  the  sample.

© 2012 Published by Elsevier B.V.
. Introduction

Vibrational spectroscopy (far-infrared and Raman) is a useful,
on-destructive procedure sensitive to local environment, ideal

or in site probing during growth, and during device fabrication
nd operation. In low-dimensional semiconductors optical phonon
odes behave substantially different from those of bulk. Optical

honons confined in semiconductor QDs affect the electronic prop-
rties responsible for Raman scattering. Most of the experimental
tudies of optical phonons in QDs have been performed by Raman
pectroscopy [1–5]. Quantum-size effect on optical phonons can
lso be seen by far-infrared (FIR) spectroscopy [6–10].

Diluted magnetic semiconductors (DMS) are alloys with mag-
etic ions diluted in nonmagnetic AIIBVI semiconductors. Mn2+ ions
an be incorporated into an AIIBVI semiconductor host in large pro-
ortions without substantially altering the crystallographic quality

f the material. Mn2+ has a relatively large magnetic moment due to
he 3d54s2 electronic configuration. Mn2+ is electrically neutral in
n AIIBVI host, thus avoiding the formation of any acceptor or donor

∗ Corresponding author. Tel.: +381 11 3713 026; fax: +381 11 3713 531.
E-mail address: romcevi@ipb.ac.rs (N. Romčević).

925-8388/$ – see front matter ©  2012 Published by Elsevier B.V.
oi:10.1016/j.jallcom.2012.01.079
impurities in the crystal. In the nanometer-size, many of the phys-
ical properties of DMS  are expected to be influenced by quantum
confinement of the electronic states and hence differ from those
of the bulk crystals. Magnetic properties of Mn2+ incorporated in
CdS and ZnS nanoparticles are widely investigated [11,12]. Opti-
cal properties were studied, and fluorescence due to isolated Mn2+

ions in tetrahedral coordination was observed and attributed to a
quantum size effect [13–15].

Cd1−xMnxS is DMS  which belongs to a group of materials known
as mixed crystals. Phonon spectra of mixed crystals depend of
the properties of end members. It is known that CdS, end mem-
ber in Cd1−xMnxS dominating in the case of small x, crystallize
in wurtzite (as in our case) or sphalerite lattice structure. Bulk
Cd1−xMnxS exists in wurtzite structure for x up to ∼0.45 [16]. Vibra-
tional spectra of pure CdS and mixed crystals with CdS as one
end-member are well known [17]. Bulk CdS samples are very reflec-
tive between ωTO = 240 cm−1 and ωLO = 304 cm−1, and flat with low
reflectivity out of this region. Second end member, MnS  appears
in three crystallographic modifications [18]. One of them is �-MnS

that crystallizes in the cubic structure of NaCl type. The TO(LO)
frequencies of this phase are 185(330) cm−1 [19]. The zincblende
crystallographic modification of MnS  (�-MnS) has phonon frequen-
cies of TO(LO) modes at 286(343) cm−1. These phonon frequencies

dx.doi.org/10.1016/j.jallcom.2012.01.079
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:romcevi@ipb.ac.rs
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ig. 1. (a) The radial dependence of l = 1 phonon frequencies calculated for CdS QDs
267  cm−1. (b) Real (up) and imaginary (down) parts of the polarizability for CdS sp

ere obtained from far-infrared reflectivity measurements of �-
nS  thin films [20]. The phonon properties of zincblende MnS

ave been investigated in ZnS–MnS alloys [21]. Using the modi-
ed random element-isodisplacement (MREI) model, the TO(LO)
ode frequencies of �-MnS were calculated at 293(361) cm−1.

ome investigations [22] show phonon frequency of zincblende
nS  thick layers to be 380 cm−1. The third modification of MnS

s wurtzite MnS  (�-MnS), but this one is not of our interest here.
In studying vibrational modes of nanocrystals, knowledge of

honon dispersion of bulk material is required. For proper treat-
ent of materials with dispersive phonons it is essential to satisfy
echanical as well as electromagnetic boundary conditions at the

urface of particle. The group of authors [23] developed a theory for
he optical vibrational modes of quantum dots (QDs) and showed
hat correct boundary conditions demand the coupling of longi-
udinal and transverse modes. The effect of correct mechanical
oundary conditions is most significant to the smallest nanocrys-
als of materials with dissipative phonons.

In this paper we report results of experimental FIR reflectiv-
ty spectra of composites containing CdS and Cd1−xMnxS nanosize
rystals. Cd1−xMnxS nanoparticles (d ≈ 4.5 nm) of various compo-
itions, x = 0, 0.01, 0.05, 0.1, 0.15, 0.3, were prepared by colloidal
hemistry based procedure. We  also presented results of theoreti-
al studies of FIR active vibrations in spherical, nanosized CdS QDs.
he phonon related polarizability of single CdS QD and effective
ielectric function of composites containing QDs with narrow size
istribution are calculated. The effects of QD dimension and vol-
me  fraction to effective dielectric function and consequently to
eflectivity spectra, for this ideal case, are analyzed.

. Synthesis and characterization of Cd1−xMnxS
anoparticles

Colloidal dispersions consisting of Cd1−xMnxS nanoparticles
ere prepared by mixing solution containing Cd(NO3)2 and
nSO4 with solution containing Na2S in the presence of surface
ctive agent sodium hexametaphosphate (NaPO3)6. The concen-
ration of cations ([Cd2+] + [Mn2+]) was constant and equal to

 × 10−3 M,  while an “excess” of S2− ions was used in the synthesis
2.4 × 10−3 M).  The content of Mn2+ ions was varied up to x = 0.30.
 boundary conditions) embedded in a matrix with ε∞
2 = 4. The Fröhlich mode is at

 of different radii embedded in matrix with ε∞
2 = 4.

The concentration of (NaPO3)6 was 2 × 10−2 M.  The light and air
were excluded during the preparation of colloidal dispersions. After
precipitation of colloidal particles the solvent was  removed by
vacuum evaporation at room temperature. The obtained yellow
powders could be redissolved in water to give a colloid with the
same structured absorption spectrum as the solution before evap-
oration of the solvent. The contents of cations in powders consisting
of Cd1−xMnxS nanoparticles were checked out by measuring atomic
absorption (ICP-AS Perkin-Emer 6500). The X-ray diffraction analy-
sis of Cd1−xMnxS nanoparticles performed for various compositions
showed hexagonal wurtzite structure of CdS. UV–vis absorption
spectra were recorded on Perkin-Elmer Lambda 5 instrument. A
blue shift of the absorption onset of the CdS nanoparticles com-
pared to bulk CdS was about 0.3 eV. The diameter of the particles
was  calculated using effective mass approximation model [24]. The
calculated value for the diameter of CdS nanoparticles was found
to be about 4.5 nm.

3. Quantized dipolar modes

A continuum model of the optical phonon confinement in a
spherical QD treats properly both mechanical and electrostatic
boundary conditions. This model, which uses parameters of bulk
phonon dispersion curves, is limited to nanoparticles of regular
shape made of bulk material. Although this is not the case in real
nano-crystallites, we present results of calculation for ideal spher-
ical CdS QD.

We  assumed that particles are small spherical semiconductor
crystals surrounded by matrix material. Materials are assumed to
be isotropic and homogeneous, separated by the surface of the
sphere. First, we  considered one small spherical CdS crystal of
radius R [25,26].  This consideration of confined optical vibrations
in nanocrystals is based on macroscopic equation for the relative
displacement (�u) of the positive and negative ions:

(ω2 − ω2
TO)�u = ˇ2

L
�∇( �∇�u) − ˇ2

T
�∇ × ( �∇ × �u) + eT

�∇ϕ
. (1)
��

The parameters of the equation are: � is the reduced mass den-
sity, ωTO is the TO bulk frequency, eT =

√
ε∞

1 �v(ω2
LO − ω2

TO)/(4�)
the transverse charge, v is the unit cell volume, and ˇT and ˇL
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Table 1
Material parameters used in the calculation. CdS parameters are transferred from
Refs. [27,28]. ε∞

2 is assumed to be 4.

Parameters CdS Matrix

ωLO (cm−1) 305
ωTO (cm−1) 238
ˇL (m s−1) 3.6 × 103
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ˇT (m s ) 1.58 × 10
ε∞

1 5.3
ε∞

2 4

re the phenomenological bending parameters for bulk dispersion
urves. ε∞

1 is the high frequency dielectric constant of the sphere.
he second equation, which connects the electrostatic potential to
he mechanical displacement, is:

�
(

ε∞
1

�∇ϕ − 4�eT

v
�u
)

= 0. (2)

hese equations describe optical phonon dispersion curves of infi-
ite isotropic material. Frequency-dependent bending parameters
2
T and ˇ2

L are derivatives of corresponding dispersion curves,
dω2/dk2|, but in CdS case, according to the shape of dispersion
urves [27,28] they are assumed as constant, Table 1. We  assumed
atrix is homogeneous material.
This problem is solved in spherical coordinates. The spherically

ymmetric solution of Eqs. (1) and (2) is:

ur =
[

Al
djl(qr)

dr
+ Bll(l + 1)

gl(Qr)
r

+ Cllr
l−1
]

Ylm(	, 
),

u	 =
{

Aljl(qr)  + Bl
d[gl(Qr)r]

dr
+ Clr

l
}

1
r

∂

∂	
Ylm(	, 
),

u
 = {. . .} 1
r sin 	

∂

∂

Ylm(	, 
),

(3)

here q =
√

(ω2
LO − ω2)/ˇ2

L , Q =
√

|(ω2
TO − ω2)|/ˇ2

T , jl is the spher-
cal Bessel function, Ylm is the spherical harmonic and gl(z) =

jl(z), . . . , z2〉0
i−ljl(iz), . . . , z2〈0 . The constants A, B and C that determine the

ongitudinal, transverse and surface components of one confined
ibration are determined by boundary conditions. Both, electro-
tatic (the continuity of the electrostatic potential and the normal
omponent of the electric displacement) and mechanical (the con-
inuity of all components of �u and components of the stress tensor)
onditions must be fulfilled at the surface. For mechanical bound-
ry conditions usually two limiting cases are considered: a rigid
phere (�u = 0 at the surface of the sphere) and free-standing sphere
all components of the stress tensor are zero at the surface). A rigid
phere approach is adequate if there is large separation between
he optical branches of the two components. QDs of semiconductor
mbedded in glass, or in other semiconductor are such examples.

The equation for the frequencies of the spherical modes of a rigid
phere is:

R · j′l(qR) · {�ε∞
2 [QR · g′

l(QR) − l · gl(QR)]

+ (lε∞
1 + (l + 1)ε∞

2 )[QR · g′
l(QR) + gl(QR)]}

= l(l + 1) · jl(qR) · {�ε∞
2 [QR · g′

l(QR) − gl(QR)]

+(lε∞
1 + (l + 1)ε∞

2 )gl(QR)}, (4)

here � = (ω2
LO − ω2

TO)/(ω2 − ω2
TO) and R is QD radius.

The spherically symmetric solutions of Eq. (1) must belong to
he irreducible representations of the three-dimensional rotation-
nversion group O(3) labeled as Dg

l
(even) and Du

l
(odd upon

g g
nversion). The mixed modes belong to D0, Du
1, D2, . . ..  The dipole

perator responsible for FIR absorption belongs to Du
1 while Raman

ransition operator for dipole-allowed scattering belongs to Dg
0 and

g
2 [29].
ompounds 521 (2012) 134– 140

Frequencies of the spherical (l = 0) and spheroidal quadrupolar
modes (l = 2) can be calculated, Eq. (4) and in principal observed by
resonant Raman scattering [30–34].

In case l = 1 solutions have both longitudinal and transversal
components including a surface mode contribution. The dipolar
mode frequencies, l = 1, calculated as solutions of Eq. (4),  for param-
eters from Table 1, are presented in Fig. 1(a). Solutions are placed
between ωTO and ωLO.

Transversal and longitudinal dispersion curves of bulk CdS inter-
sect inside Brillouin zone. The dispersion of the TO mode is positive
and the TO confined modes have frequencies greater than the bulk
ωTO frequency. At the frequency of ≈255 cm−1, ωTgr, the transverse
wave vector component has a value of the edge of the Brillouin zone
in bulk CdS. As the wave vector component for TO modes cannot
be larger than this value it must be continued along the complex
Brillouin zone. This complex wave vector effectively damps out the
contribution of the TO modes to the dispersion relation. Above this
frequency only contribution is due the confined LO modes with
some bending in dispersion at ≈267 cm−1 caused by the interac-
tion with the electrostatic surface mode contribution. Electrostatic
surface mode for l = 1 is known as Fröhlich mode (ωF). This mode is
not a solution of the rigid boundary conditions problem, but there
is a bending in the dispersion curves near to ωF, as can be seen in
Fig. 1.

Composite of QDs and matrix is an example of inhomogeneous
medium and an effective response of this composite is measured
in the FIR spectral region. To calculate effective dielectric response
we must determine polarizability of a single spherical inclusion, i.e.
one QD.

Polarizability  ̨ of a single QD is a sum of a “background”
polarizability (˛0) and frequency dependent part (˛1) which is a
consequence of the forced dipolar vibrations induced in the sphere
by the field [33]:

˛ = ˛0 + ˛1 = ε∞
1 − ε∞

2
ε∞

1 + 2ε∞
2

R3 + 3ε∞
1 ε∞

2 (ω2
LO − ω2

TO)

(ε∞
1 + 2ε∞

2 )2

∑
n

D2
n

ω2
n − ω2 − iı

.

(5)

ωn are solutions of Eq. (4) for l = 1 presented in Fig. 1(a). ı reflects the
value of damping factor. Dn =

∫ R

0
(ur

n + 2u	
n)r2dr,  where ur

n and u	
n

are radial dependent parts of the displacement components ur and
u	 , Eq. (3),  for nth solution. Dn is measure of the contribution of nth
mode to polarizability, i.e. the strength of each mode. Coefficients
Dn must fulfill condition:

∑
n|Dn|2 = R3.

Calculated values of Dn give us opportunity to form a frequency
dependent polarizability of sphere. Results of our calculation for
real and imaginary part of polarizability are presented in Fig. 1(b).
For the smallest radius, R = 1 nm,  group of modes close to the
bulk TO frequency produce the dominant one of two  polarizability
peaks. In principal there is multimodal structure of polarizability
of sufficiently small sphere. As R increases number of confined
modes increases to, and modes close to the Fröhlich frequency
(ωF ≈ 267 cm−1) produce the most of the polarizability, i.e. of the
FIR activity. For R = 2.5 nm multimodal structure is almost absent
and one structure close to ωF dominates.

In case of spherical QDs, volume filling fraction f cannot be
greater than ∼0.5. Filling fraction of the many experimentally
studied QD composites does not exceed few percent. To illustrate
behavior of the ideal system we  present results for three differ-
ent filling fractions: 0.05 and 0.2 for spheres of one dimension
(without size distribution) uniformly distributed inside sample. For
small filing fraction f, inclusions of QD material are completely

surrounded by a uniform matrix, the effective medium approach
originally due to Maxwell–Garnett can be used to describe effective
dielectric function [33]. The real and imaginary parts of effective
dielectric function, calculated for composites containing assumed
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smaller radius. Second is existence of regions in sample with higher
ig. 2. Calculated reflectivity of composite containing (a) f = 0.05 and (b) f = 0.2 of
dS QDs of different radii.

olume fraction of CdS QDs of different sizes, give reflectivity spec-
ra in Fig. 2. Increase of filling fraction f increases the intensity of
eflectivity.

We conclude that in the case of R < 2.5 nm there will be two
aximums or one maximum and a shoulder in reflectivity spectra.
odes of frequency ω < ωgr produce spectral structure in reflectiv-

ty in region 240–260 cm−1, that dominate in R = 1 nm QD spectra,
nd modes in spectral region ω > ωgr produce structure in region
60–280 cm−1, that dominate in R = 2.5 nm QD spectra, Fig. 2. In
ase R � 2.5 nm there will be one maximum in reflectivity approx-
mately at the position ≈265 cm−1.

For large filling fraction dipole–dipole interaction between QDs
an be important. It can modify the FIR spectrum and absorption
and can be shifted from Fröhlich frequency toward the bulk TO
requency [33]. In this approach maximum in reflectivity is pushed
oward ωTO or even below ωTO. Such behavior of the spectrum
mply large filling factor at least in a part of sample. Theory applied
n this work, allowed a good description of experimental results
n Refs. [30–33],  or absorption spectrum of PbS QDs embedded in
PV [35]. No quantum size effect is expected for free-standing QD,
here the size-independent Fröhlich mode is allowed.

. Results and discussion

Experimental reflectivity spectra of Cd1−xMnxS nanoparticles
x = 0, 0.01, 0.05, 0.1, 0.15, 0.3) embedded in (NaPO3)6, and spec-
rum of matrix, i.e. pure (NaPO3)6 in the wave number range from
0 to 600 cm−1 at 300 K and 80 K are given by the points in Fig. 3. As

 consequence of small density of CdS nanoparticles in our samples
he change of reflectivity compared to spectra of matrix alone is not
rastic. It is difficult to identify peaks without detailed analysis. All
pectral features are more prominent in case T = 80 K, especially in
ase of higher Mn  content.

The analysis of the experimental far-infrared reflectivity spectra
as made by the fitting procedure. The Maxwell–Garnet effective
edium theory is used for modeling an effective dielectric function.

his classical mixture formula is applied to homogeneous, spherical

r ellipsoidal inclusions in a homogeneous, isotropic or anisotropic
ackground material [36]. The mixture we studied consists of two
omponent: one is treated as host, in our case (NaPO3)6, of dielectric
ompounds 521 (2012) 134– 140 137

function εb and the other as an inclusion phase (Cd1−xMnxS) with
dielectric function εi. Both dielectric functions are described by:

εi,b(ω) = ε∞

(
n∏

k=1

ω2 + i�LOkω − ω2
LOk

ω2 + i�TOkω − ω2
TOk

− ω2
P

ω(ω + i−1)

)
(6)

where ωTO, ωLO and ωP are transverse, longitudinal and plasma
frequencies, respectively. �TO and �LO are the damping of TO and
LO modes,  is the free-carrier relaxation time and ε∞ is the high
frequency dielectric constant. The first term in (6) comes from the
lattice vibration contribution to the dielectric constant. The second
term comes from the free carrier contribution to the dielectric con-
stant. The volume fraction of the inclusions is f = 4�nR3/3, where n
is the particle number density and R is sphere radius.

The Maxwell–Garnett formula is explicitly given by:

εeff = εb + 3fεb(εi − εb)
εi + 2εb − f (εi − εb)

(7)

where εeff is the effective dielectric function of the mixture, and
gives the best results for the small volume fraction (see for exam-
ple Ref. [36]). Through fitting procedure we  get parameters of series
of modes. Calculated reflectivity curves for these parameters are
shown by lines in Fig. 3. Position of modes as function of x for tem-
peratures 300 K and 80 K is given in Fig. 4. Modes are separated into
two  groups. In Fig. 4(a) there are modes that are present in all sam-
ples. Presence of these modes in case x = 0, i.e. in CdS QDs imply
that they are characteristic for CdS QD and we analyzed them in
that manner. In Cd1−xMnxS QD spectra there are additional modes
that are separately presented in Fig. 4(b).

In previous chapter we predicted behavior of the system in
ideal case, but in reflectivity spectra of our samples there are lot
of modes out of the CdS optical phonon region. If shape of inter-
faces is so irregular spherical assumption can be ruined, or some
parts of interface, as peninsulas can be new space of confinement.
Another discrepancy from ideal case is also matrix inhomogeneity,
i.e. fluctuating properties of the matrix in real samples. Assumed
parameters for QD material were the same in all directions of Bril-
louin zone. These parameters are good approximation for wurtzite
crystal structure for the �–A direction in the Brillouin zone which
is not far from the cubic in this case. Four atoms per wurtzite prim-
itive cell have more degree of freedom and corresponding phonon
dispersions, with characteristic high density of states at the end of
Brillouin zone (M1 ≈ 130 cm−1, M4 ≈ 170 cm−1, H3,M1 ≈ 210 cm−1).
We,  also, assumed perfectly crystalline spherical particles. Disorder
is hard to avoid in nano-structured materials.

In our analysis we  separated spectral region into three regions:
ω < ωTO CdS, ωTO < ω < ωLO and ω > ωLO.

In the second region, in the spectra of CdS QDs there are
two  modes. According to the fitting procedure TO/LO frequen-
cies of these two modes are: ≈230/256 cm−1 and ≈285/295 cm−1,
Figs. 3 and 4(a). This is in agreement to results of calculations given
in Section 3. Absence of the multimodal structure is predicted, i.e.
dimension of the CdS QDs (R ≈ 2.25 nm)  is not small enough to
produce multimodal behavior in reflectivity spectra. As predicted,
in optical phonon confinement region of R < 2.5 nm CdS QD radius
we expect two  structures in reflectivity spectra: one in the region
ω < ωTgr and the other in the region ω > ωTgr. For R < 2 nm the first
one is expected to be of higher reflectivity giving slope similar to
the experimental. For R > 2 nm the second one is expected to be of
higher reflectivity giving slope opposite to the experimental one.
There are few possible reasons that can be responsible for obtained
experimental slope of reflectivity. One is the presence of QDs  of
concentrations of QDs implying dipole–dipole interaction. It is hard
to control spatial positions of QDs in order to have uniform QD
distribution, and in our samples uniformity of QD distribution in
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atrix is questionable. Finally, existence of additional mode of fre-
uency 220 cm−1, practically at the edge of this region is probably
he most important one.

In the first region, where IR reflectivity spectra of bulk CdS, or
deal shaped CdS QD embedded in homogeneous matrix of con-
tant dielectric permittivity should be almost flat, in experimental
pectra of CdS QDs there are four spectral structures at: ≈102 cm−1,
135 cm−1, ≈170 cm−1 and ≈210 cm−1, Figs. 3 and 4(a).

The first mode at about 102 cm−1 is the result of Cd vacancies
37].

Group of authors [38] proposed a model to investigate the
mpact of QD shape irregularities and the interatomic force con-
tant’s disorder in a semiconductor nano-crystallites. They studied
ynamical problem in two-dimensions. The nearest-neighbor
nteraction constant could be considered as random variable within
 certain distribution in order to model random atomic deviations
rom the regular lattice positions. Applying free b.c.s. produce a

ode below ∼210 cm−1.
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Phonon properties of diatomic crystals in some symmetry direc-
tions can be properly described even by one-dimensional, linear
diatomic chain [42], and even better by dynamical problem in two
dimensions (2D) [38]. The obtained results are in good quantitative
agreement with the more complex three-dimensional calculations.
For wurtzite structure, with four atoms per primitive cell, �–A
direction allows such modeling with additional zone folding. In
studying vibrational modes of nanocrystals, knowledge of phonon
dispersion of bulk material is required. In the spectral region where
IR reflectivity spectrum of bulk material is flat, new structures are
a consequence of disorder emphasized by finite, i.e. nanometer,
size of the crystals. In the nanometer size CdS QDs, that are sub-
ject of this investigation, about 50% of atoms are on the surface,
which induces more probable defect creation. We  modeled these

nanocrystals with finite two-dimensional problem [38]. Force con-
stants in the assumed system of internal vibration coordinates from
bulk are transferred to finite 2D problem. We  tentatively assumed
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Fig. 5. Reflectivity spectra of Cd1−xMnxS QDs, obtained wi

ort of atoms and choose motion conditions and neighbors force
onstants between ending and neighbor atoms to identify frequen-
ies registered in experimental spectra.

If we treat finite 2D area with ending Cd atoms and no motion at
he end, that corresponds to rigid boundary conditions on the sur-
ace, with reasonable change in force constants for bonds toward
nding atoms, we obtained frequencies from phonon branches of
dS out of the center and close to the end of Brillouin zone, at
170 cm−1. If S atoms are placed at the end of the array, with no

estriction in motion, assuming force constant between ending S
tom and neighbor Cd atom to decrease in comparison to force
onstants inside array, the frequency of ∼135 cm−1 is obtained.

In clusters with strongly disordered shape the appearance of
ow-frequency mode originating from Brillouin zone edge acoustic
ibrations so called disorder activated acoustic modes is already
een [39–41].  Mode at ∼135 cm−1 is practically disorder activated
coustic mode. We  emphasize that this disorder is connected to the
urface.

In the region above ωLO, there are spectral features that can easy
e identified as multiphonon features. We  will discuss these modes
t the end of this chapter.

In tentatively doped semiconductor phase there are new sources
f disorder. Despite the initial doping conditions nanoparticles
n the sample slightly differ in properties as consequence of
uctuation in composition. In Cd1−xMnxS QD reflectivity spectra
ew reflectivity peaks are at: ≈85 cm−1, ≈110 cm−1, ≈180 cm−1,
270 cm−1, ≈356 cm−1, and ≈376 cm−1.

In ideal case Mn2+ ions are well dispersed inside Cd1−xMnxS
anocrystals. For small x Mn  ions should be isolated in tetrahedral
oordination. It is shown [12] that there is a trend for Mn2+ ions to
igrate to the nanocrystal surface.
Phonons of Cd1−xMnxS nanocrystals were modeled as a finite 2D

rea, also. We  tentatively locate Mn2+ ions near the edge of area and
hoose force constants to get the characteristic frequencies. If Cd
toms are substituted by Mn  atoms in different positions inside the
rea, the calculated frequencies belong to the region of the vibra-
ional modes of CdS. That is a consequence of relation between atom

asses and force constants corresponding to bulk materials. If Mn
toms are placed at the edge, which simulates Mn  atom placed on

he surface of the nanocrystal, calculated frequencies are in a region
lready abundant in modes. If S atoms are placed at the edge of array
nd Mn2+ ions as the first neighbors and force constants changing
ithin reasonable limits, ≈85 cm−1 and ≈ 115 cm−1 frequencies are
 in Eq. (7),  using the parameters obtained for the best fit.

obtained. With increased amount of Mn,  these characteristic fre-
quencies are increased insignificantly. On the basis of this analysis
we assigned these modes to modes connected to Mn2+ ions located
near the surface.

Two pairs of TO(LO) frequencies, 186(356) cm−1 and
270(376) cm−1, correspond to �-MnS and �-MnS, respectively. We
suppose that small areas of MnS  are present in sample. Differences
compared to the TO(LO) frequencies in bulk MnS  are consequence
of small dimension or phonon–plasmon interaction.

To emphasize position of the modes in spectra in Fig. 3 we artifi-
cially put filling factor f to be 1. We  present hypothetical reflectivity
spectra of two  QD compositions in Fig. 5 just as an illustration.

In the region above 300 cm−1, there are spectral features that
can be easy identified as multiphonon features. Multiphonon pro-
cesses in CdS based materials were registered [41] and discussed
in detail [42]. Raman spectra were analyzed in detail but these
processes can also be registered in FIR measurements [32], as
in our work. A decrease in particle dimensions increases these
effects. In our spectra dominant structure is in the region from
470 to 540 cm−1. In this region the frequencies are situated
at: 4 × 130 = 520 cm−1, 3 × 170 = 510 cm−1, 4 × 120 = 480 cm−1,
and 2 × 240 = 480 cm−1. These structures are intensive com-
pared to the rest of spectra. Also, less intensive structures
at 240 + 300 = 540 cm−1, 2 × 170 = 340 cm−1, 300 + 130 = 430 cm−1

and 240 + 170 = 410 cm−1 are present in the spectra. Various mod-
els have been used to explain the multiphonon processes including
the cascade model [43] and solid state analog of the configuration
coordinate model [44]. Which of these spectral structures are inten-
sive enough to be registered in experimental spectra depends on
many factors, such as density of particles on surface of prepared
tablet, for example. For these reasons it is very difficult to discuss
the intensities of these multiphonon structures.

5. Conclusion

In this paper we  present experimental far-infrared reflectivity
spectra of CdS and Cd1−xMnxS QDs embedded in matrix of low
reflectivity. As a result of the Maxwell–Garnet effective medium
theory, followed by very careful fitting procedure, series of modes

are identified in experimental spectra.

Calculations of quantized dipolar modes in ideal spherical CdS
QD in the framework of a continuum model with rigid boundary
conditions were performed. Two  spectral structures are predicted
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n reflectivity spectra of ≈4.5 nm diameter CdS QD in optical
honon region. Experimental reflectivity spectra, not so prominent

n this spectral region, are generally in agreement with results of
hese calculations. This is hard to see without detailed analysis of
xperimental spectra. Spectral structures of different origin that
ominate in the spectra are mostly out of this spectral region but
ome are at the edge of the optical phonon region.

For CdS QD there are four modes in spectral region below ωTO,
t: ≈102 cm−1, ≈135 cm−1, ≈170 cm−1 and ≈ 210 cm−1. Positions
f registered modes can be obtained as solutions of finite dynam-
cal problem with different dynamical parameters at the surface
ompared to the parameters inside area. We  tentatively assigned
hese modes as surface, i.e. surface disorder activated modes.

In Cd1−xMnxS QD spectra new reflectivity peaks are at:
85 cm−1, ≈110 cm−1 and ≈180 cm−1 in spectral region below CdS
TO, ≈270 cm−1 inside CdS ωTO–ωLO spectral region and ≈356 cm−1

nd ≈ 376 cm−1 in region over CdS ωLO. First two modes registered
n spectral region below CdS ωTO can be connected to Mn2+ ions
ocated near the surface, because they are solutions of dynamic
roblem for the finite dimension with both mass, Mn  substitutes
d, and force constant defects at the surface. Rest four modes are
onsequence of MnS  phases present in the samples.

Spectral structures in the region above CdS ωLO are identified as
ultiphonon features.
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